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Abstract. We formulate and solve a discrete-time path-optimization problem where a sin-

gle searcher, operating in a discretized 3-dimensional airspace, looks for a moving target in

a finite set of cells. The searcher is constrained by maximum limits on the consumption

of several resources such as time, fuel, and risk along any path. We develop a special-

ized branch-and-bound algorithm for this problem that utilizes several network reduction

procedures as well as a new bounding technique based on Lagrangian relaxation and net-

work expansion. The resulting algorithm outperforms a state-of-the-art algorithm for solving

time-constrained problems and also is the first algorithm to solve multi-constrained problems.

1 Introduction

We consider a discrete-time path-optimization problem where a single searcher moves through

a discretized 3-dimensional airspace to find a moving target operating in a finite set of cells on

the ground. The searcher is subject to constraints on path continuity, path endpoint, flight

time, risk exposure, fuel consumption, and possibly other factors. We refer to this path-

optimization problem as the resource-constrained search problem (RCSP). The objective of

RCSP is to maximize the probability of detecting the target.

RCSP arises in military search, surveillance, and reconnaissance operations with patrol

aircraft and unmanned aerial vehicles (UAVs) where physical and operational constraints

limit the probability of detection. The resulting optimization problem is quite challenging.

In fact, the path- and time-constrained search problem with a stationary target is NP-
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complete [22]. Thus RCSP, which may involve a moving target and additional constraints,

is at least as difficult.

Search for a moving target in discrete time and in an environment consisting of a finite

set of cells was first analyzed in [21, 23]. These studies as well as more recent ones [11, 18,

8, 25, 17] focus on the development of specialized branch-and-bound algorithms for finding

an optimal path for the searcher. In these algorithms, a path is a sequence of cells that

the searcher will visit and branching corresponds to extending a subpath by one more cell.

Bounds on the optimal value of the problem are obtained by replacing the probability of

detection with, effectively, the expected number of detections [8, 25, 17]. Bounds are also

obtained by assuming that the searcher can divide its effort among multiple cells each time

period [11].

Existing studies only consider the path- and time-constrained problem where path con-

tinuity and a search-time limit are enforced. In addition, these studies limit the searcher to

search on the ground or from a constant altitude. In military search, surveillance, and recon-

naissance operations over land, however, factors such as risk and fuel consumption become

independent elements of concern for planners [20]. Risk to the searcher arises from exposure

to threats on the ground such as small arms fire, anti-aircraft artillery, and surface-to-air

missiles. Risk of pilot error (e.g., for a low-flying helicopter [15]) and mechanical failure

(e.g., for small, unreliable UAVs [16]) may also be significant. Fuel consumption ceases to be

proportional to the search duration due to variation in the searcher’s speed and/or altitude

as well as varying weather conditions. During search over land, terrain features require alti-

tude changes. The altitude is also varied to balance the searcher’s risk with image quality.

We note that image quality is of particular concern for small UAVs operating with low- to

moderate-quality sensors. Our study is primarily motivated by military operations. How-

ever, civilian search and surveillance operations over land may face many of the same factors

with the exception of ground fire.

Another line of research aims at finding a resource-constrained shortest path in a net-

work. Such problems arise in minimum-risk routing of military aircraft subject to fuel [19, 26]
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and fuel and time [6] constraints. These problems have similar constraints to the ones in

RCSP, but deal with linear and time-invariant objective functions. In contrast, RCSP has

a nonlinear, time-variant objective function where the probability of detection during the

current time period depends on the subpath used to reach the searcher’s current position

(see Section 2). In the context of minimum-risk routing, researchers have only recently con-

sidered resource-constrained shortest-path problems with nonlinear objective functions, and

then only for special cases of path-dependent risks [15].

In this paper, we formulate RCSP by generalizing existing models to the case of multiple

resource constraints and an altitude-dependent searcher with glimpse detection probability

depending on not only the searcher’s current location but also its previous location. We

combine the methodology for solving the path- and time-constrained search problem with the

line of research on the resource-constrained shortest-path problem. Specifically, we merge

the algorithms in [17] and [6], and develop a specialized branch-and-bound algorithm for

RCSP. The resulting algorithm utilizes a new bounding technique, applies several network

reduction procedures, exhibits promising behavior in computational tests, and appears to be

easier to implement efficiently than the algorithm in [17].

The remainder of the paper is outlined as follows. The next section formulates RCSP.

Section 3 describes an existing branch-and-bound algorithm and develops several enhance-

ments. Section 4 extends the algorithm of Section 3 to the case with multiple resource

constraints. Section 5 presents a case study of RCSP with time, risk, and fuel resource

constraints. The paper ends with summary and conclusions in Section 6.

2 Resource-Constrained Search Problem

The area of interest is discretized into a finite set of cells C = {1, . . . , C} (see Figure 1) and

the time horizon is discretized into a finite set of time periods T = {1, 2, ..., T}. A target

occupies one cell each time period and moves among cells according to a Markov process

with known transition matrix Γ. Let p(·, t) = [p(1, t), p(2, t), . . . , p(C, t)], where p(c, t) is the

probability that the target is in cell c ∈ C at the beginning of time period t ∈ T and the
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target has not been detected before t. We refer to p(·, t) as the undetected target distribution.

The initial target distribution p(·, 1) is known.

The searcher moves through a designated airspace over the area of interest with the

goal to find the moving target on the ground. The airspace over each cell c ∈ C is vertically

discretized into a set of altitudes H = {1, 2, . . . , H} (see Figure 2). For any c ∈ C and h ∈ H,

we refer to the cell-altitude pair 〈c, h〉 as a waypoint where the searcher can loiter and carry

out search of cell c. We model the designated airspace by a directed network (V , E), with set

of vertices V and set of directed edges E , in which vertices v = 〈c, h〉 ∈ V represent waypoints

and directed edges e = (v, v′) ∈ E represent transition between waypoints v, v′ ∈ V . The

searcher can only transit between two waypoints that are physically located adjacent to each

other. Let F(v) ⊂ V be the set of vertices that are adjacent to v ∈ V . We refer to F(v) as

the forward star of vertex v. We adopt the convention that v ∈ F(v) for all v ∈ V . Then,

the set of edges E = {(v, v′) ∈ V × V| v′ ∈ F(v)}.
During each time period t ∈ T , the searcher is at a particular vertex (waypoint). We

assume there is no transit time between waypoints. Hence, (v, v′) ∈ E simply represents

search at waypoint v followed by search at waypoint v′ in the next time period. The situa-

tion with nonzero transit time between waypoints can be modeled, at least approximately,

by introducing artificial vertices. (We refer to [17] for a comprehensive study of nonzero

transit times.) We note that the edge (v, v) ∈ E represents searching at waypoint v for two

consecutive time periods.

Let φ : V → C be the function that specifies the cell over which a vertex is located, i.e.,

cell φ(v) is searched from vertex v. We denote the searcher’s vertex (waypoint) prior to time

period 1 by v0 ∈ V . This starting vertex could be a designated entry waypoint into the area

of interest. We also define V̂ ⊂ V to be a set of possible destination vertices for the searcher

(e.g., V̂ = {v0} if the searcher is required to return to the starting vertex or V̂ = V if the

search can end anywhere).

For any k ∈ T and vl ∈ V , l = 0, 1, 2, ..., k, such that (vl−1, vl) ∈ E for all l = 1, 2, ..., k,

let the sequence {vl}k
l=0 denote a directed v0-vk subpath. If vk ∈ V̂ , then the directed v0-vk
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subpath is a directed v0-vk path. When the meaning is clear from the context, we refer to a

directed v0-vk (sub)path as a (sub)path. In this notation, the searcher flies from v0 to some

vk ∈ V̂ along a directed v0-vk path. The searcher occupies only one vertex v ∈ V each time

period, and stays at the same vertex or moves to another vertex in F(v) for the next time

period.

We adopt the following target detection model. If the target is in cell c ∈ C during

time period t ∈ T and the searcher is at the same time at waypoint v′ ∈ V above cell c,

i.e., φ(v′) = c, then detection occurs with a glimpse detection probability g(v, v′, t), where

v ∈ V is the searcher’s waypoint during time period t − 1. Hence, the glimpse detection

probability during time period t depends on the previous and current waypoints for the

searcher. This is a generalization of earlier models where the glimpse detection probability

depends only on v′ and t [25, 17]. Our model accounts for the fact that moving from some

waypoint to a new waypoint may result in a lower glimpse detection probability than if the

searcher already was loitering at the latter waypoint. This effect occurs if refocusing the

sensor and becoming familiar with a new cell have a significant detrimental effect on the

glimpse detection probability. In general, change of waypoint, especially change of altitude

and frequent, irregular change of direction, may distract from the search. This generalization

also allows us to indirectly account for small transit times (much less than the length of a

time period) between waypoints without adopting a fine time discretization with resulting

high computational cost. In this notation, the probability of detection at waypoint v′ during

time period t, given search at waypoint v during time period t− 1, and no prior detections

becomes p(φ(v′), t)g(v, v′, t).

The glimpse detection probability may also depend on the searcher’s speed. To account

for this situation, edges can trivially be duplicated as in [6] to represent search at different

speeds in cases where speed influences the searcher’s effectiveness significantly. For the sake

of simplicity, however, we do not introduce notation to handle that situation.

Since p(·, t) is the undetected target distribution at the beginning of time period t, it de-

pends on searches up to time period t−1. Specifically, if p(·, t) = [p(1, t), . . . , p(c′, t), . . . , p(C, t)]
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and cell c′ is searched from waypoint v′ during time period t, the undetected target distri-

bution at the beginning of the next time period t + 1 is

p(·, t + 1) = [p(1, t), .., p(c′ − 1, t), p(c′, t)(1− g(v, v′, t)), p(c′ + 1, t), .., p(C, t)]Γ, (1)

where v is the searcher’s vertex during time period t− 1. Thus, the probability of detection

along a path P = {vl}k
l=0, denoted q(P), is defined as

q(P) =
k∑

t=1

p(φ(vt), t)g(vt−1, vt, t). (2)

Let I = {1, 2, ..., I} be a set of resources and fi(v, v′, t) be the amount of resource i ∈ I
consumed by the searcher at vertex v′ during time period t, given search at vertex v during

time period t− 1. Resources may represent physical commodities such as fuel and ordnance

that are depleted during the search as well as abstract factors such as notions of risk exposure

during the search. In contrast to search by manned aircraft where significant risks are usually

avoided, planners accept higher risks for UAV search missions and would like to balance risk

with other factors during the planning process. We discuss the calculation of risk in Section

5. The total “consumption” of resource i ∈ I along the path P is

ri(P) =
k∑

t=1

fi(vt−1, vt, t). (3)

The searcher cannot consume more than r̂i of resource i ∈ I along a path. Hence, RCSP is

the problem to find a directed v0-vk path P = {vl}k
l=0, with vk ∈ V̂ , k ∈ T , that maximizes

q(P) subject to the constraints

ri(P) ≤ r̂i, i ∈ I. (4)

We refer to (4) as side constraints. In Section 5, we examine a case study with two

time-invariant resources: risk and fuel. The next section deals with the “unconstrained”

problem with no side constraints, while Sections 4 and 5 address the full RCSP.

3 Branch-and-Bound Algorithm for Time-Constrained Problem

We refer to the problem of maximizing (2) without the side constraints (4) as the time-

constrained search problem (TCSP). Several branch-and-bound algorithms for the solution of
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TCSP have been developed [21, 23, 11, 18, 25, 8, 17]. These algorithms implicitly enumerate

all searcher paths that cannot be proven, by means of a bound, to be nonimproving. The next

subsection presents the algorithm in [17], which appears to be the fastest in the literature

for TCSP under a broad range of conditions; see [17] for an empirical study. The subsequent

subsection presents four modifications of that algorithm.

In this section we do not consider side constraints and can assume without loss of

generality that an optimal path consists of T + 1 vertices. To simplify the notation, we also

assume in this section that there is no end-point restriction, i.e., V̂ = V . We find identical

assumptions in [25, 17]. Initially, we assume that the glimpse detection probability g(v, v′, t)

is independent of v and write g(v′, t). However, we relax that assumption later in this section.

3.1 Existing Algorithm

For completeness and ease of reference later, we outline the algorithm in [17]. Given a

subpath {vl}t−1
l=0, t ∈ T , let K(t) be the set of triplets of the form (vt, t, q̄(vt, t)) representing

extensions of {vl}t−1
l=0 yet to be explored. The first element vt refers to the next vertex to

visit, the second element t is the time period1 to visit the vertex vt, and the third element

q̄(vt, t) is an upper bound on the probability of detection along any path that starts with the

subpath {vl}t
l=0. The upper bound q̄(vt, t) consists of three parts. Let dt(vt, t) be an upper

bound on the probability of detection during time periods t + 1, t + 2, ..., T , given that the

searcher starts at vt at time t, and no detection occurs along the subpath {vl}t
l=0. The two

other parts are the probability of detection on the subpath {vl}t−1
l=0 and the probability of

detection during t. Hence,

q̄(vt, t) = q({vl}t−1
l=0) + p(φ(vt), t)g(vt, t) + dt(vt, t). (5)

We also let q̂ denote the largest detection probability found so far among all the examined

paths. In this notation, the algorithm in [17] takes the following form.

Algorithm 1.

1This information is currently redundant but the notation is convenient in later generalizations.
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Step 0. Set t = 0,K(t) = {(v0, 0,∞)}, and q̂ = 0.

Step 1. If K(t) is empty, replace t by t− 1. Else, go to Step 3.

Step 2. If t = 0, stop: the last saved path is optimal and q̂ is its probability of detection.

Else, go to Step 1.

Step 3. Remove from K(t) the triplet (vt, t, q̄(vt, t)) with the largest bound q̄(vt, t).

Step 4. If q̄(vt, t) ≤ q̂, go to Step 1. (Current subpath is fathomed.)

Step 5. If t < T , then for each vertex v ∈ F(vt), calculate a bound dt+1(v, t + 1) as well as

q̄(v, t + 1), see (5), and add (v, t + 1, q̄(v, t + 1)) to K(t + 1). Replace t by t + 1 and go

to Step 3. Else, let q̂ = q̄(vt, t) and save the incumbent path {vl}T
l=0, and go to Step 1.

Clearly, a tight bound dt(vt, t) will reduce the number of branching attempts in Algo-

rithm 1. As examined in [24, 25, 17], there is a fundamental trade-off between the effort

needed to compute a bound and its tightness. From these studies, it appears that the

bounding technique in [17] compares favorably in most situations. We describe that bound-

ing technique in the rest of this subsection.

Consider a subpath {vl}t
l=0, t ∈ T , and let pg(·, t) be the undetected target distribution

after search along {vl}t
l=0, i.e.,

pg(·, t) = [p(1, t), ..., p(φ(vt)− 1, t), p(φ(vt), t)(1− g(vt, t)), p(φ(vt) + 1, t), ..., p(C, t)]. (6)

We use subscript g to indicate that pg(·, t) is obtained from p(·, t) by applying the glimpse

detection probability corresponding to the last vertex in the “current” subpath {vl}t
l=0. For

any integer s > t, s ∈ T , we also define

pΓ(·, s; t) = pg(·, t)Γs−t. (7)

As seen, pΓ(c, s; t) is the probability that the target is in cell c at time period s > t and

there was no detection during search along the subpath {vl}t
l=0. Hence, target distribution
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pΓ(·, s; t) at time period s > t ignores the effect of search after time period t. If the subpath

is {v0}, i.e., t = 0, we define for notational convenience

pΓ(·, s; 0) = p(·, 1)Γs−1, (8)

for any s > 0, s ∈ T . Moreover, we define pΓ(c, t; t) = 0 for all c ∈ C and t = 0, 1, ..., T .

Now, we construct a time-expanded graph from the network (V , E) as follows (see Figure

3). Each vertex v ∈ V is duplicated T times to define the nodes 〈v, s〉, s ∈ T . Let N be

the set of all such nodes as well as the nodes n0 = 〈v0, 0〉 and n̂ = 〈v̂, T + 1〉 representing

the searcher’s prior position and final position, respectively. Here, v̂ is an artificial terminal

vertex. Two nodes n = 〈v, s− 1〉 and n′ = 〈v′, s〉, v, v′ ∈ V and s = 2, 3, ..., T , are connected

with an arc (n, n′) if and only if (v, v′) ∈ E . Moreover, the node n0 = 〈v0, 0〉 is connected with

an arc to a node n′ = 〈v′, 1〉, v′ ∈ V , if and only if (v0, v
′) ∈ E ; and every node n = 〈v, T 〉,

v ∈ V is connected with an arc to n̂. Let A be the set of all arcs. For any integer k ≤ T + 1

and nodes nl = 〈vl, l〉 ∈ N , l = 0, 1, ..., k, such that (nl−1, nl) ∈ A for all l = 1, 2, ..., k, we let

the sequence {nl}k
l=0 denote a subpath in the time-expanded graph (N ,A).

For some t ∈ {0, 1, ..., T −1}, suppose that a subpath {vl}t
l=0 in the original graph (V , E)

is given. Then, we endow each arc (n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A, s = t, t + 1, ..., T − 1, in

the time-expanded graph (N ,A) with a “reward”

cn,n′ = [pΓ(φ(v′), s + 1; t)− pΓ(φ(v), s; t)g(v, s)Γ(v, v′)]g(v′, s + 1), (9)

where Γ(v, v′) is the φ(v)-φ(v′) element of the Markov transition matrix Γ. We set cn,n̂ = 0

for all (n, n̂) ∈ A. We observe that multiplied out the first term pΓ(φ(v′), s + 1; t)g(v′, s + 1)

in (9) is effectively the expected number of detections during time period s + 1, which gives

rise to the so-called mean bound [18], and the second term in (9) improves the bound by

accounting for the effect of search during time period s [17]. We refer to (N ,A) with arc

rewards given by (9) as the time-expanded network.

In [17], it is shown that given the subpath {vl}t
l=0, the optimal value of the longest-path

problem in the time-expanded network from node 〈vt, t〉 to node 〈v̂, T +1〉, using the rewards

in (9) as “arc length,” provides an upper bound for Algorithm 1. Specifically, this optimal
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value is an upper bound on the probability of detection during time periods t+1, t+2, ..., T ,

given that the searcher starts at vt at time t, and no prior detections occurred along the

subpath {vl}t
l=0. We denote this bound by dt(vt, t) and refer to it as the dynamic bound as

it needs to be recomputed every time the current subpath is extended.

Since the time-expanded network is acyclic, the longest-path problem can be solved in

polynomial calculation time with a standard shortest-path algorithm ([1], pages 77-79). We

observe that to compute dt(vt, t) given the subpath {vl}t
l=0, it is only necessary to generate

the part of the graph (N ,A), and the corresponding arc rewards, “after” time t and within

reach from node 〈vt, t〉, since the longest path starts at node 〈vt, t〉. Hence, in Step 5 of

Algorithm 1, it suffices to generate the time-expanded network “after” time t.

3.2 Algorithmic Modifications for TCSP

In this subsection, we propose and examine four modifications of Algorithm 1. The first

modification extends the bound in [17] to the case with glimpse detection probability de-

pending on the previous vertex, i.e., g(v, v′, t). The second modification simplifies the bound

calculation substantially at the expense of a weaker bound. The third modification improves

the weaker bound. The fourth modification takes advantage of a special, but frequently

occurring, initial target distribution.

3.2.1 Bound for Edge-Dependent Glimpse Detection Probability

In previous studies (see, e.g., [25, 17]), the glimpse detection probability is assumed to de-

pend on the searcher’s current waypoint (vertex) and time. As we argue in Section 2, this is

somewhat restrictive. Fortunately, we can easily extend this to the case where the glimpse

detection probability also depends on the searcher’s previous waypoint. The only modifica-

tion that is required is to redefine the arc reward cn,n′ in (9). However, a straightforward

replacement of g(v, s) by g(v′′, v, s) in (9), where v′′ is the vertex prior to v, would ruin the

longest-path structure of the bound calculation problem: cn,n′ would no longer only depend

on the head and tail of the arc (n, n′). Hence, it is necessary to use the smallest glimpse

detection probability minv′′∈R(v) g(v′′, v, s) to eliminate the dependence on the vertex prior
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to v. Consequently, we now endow each arc (n, n′) = (〈v, s〉, 〈v′, s+1〉) ∈ A with the reward

cn,n′ =

[
pΓ(φ(v′), s + 1; t)− pΓ(φ(v), s; t)

(
min

v′′∈R(v)
g(v′′, v, s)

)
Γ(v, v′)

]
g(v, v′, s + 1), (10)

where R(v) ⊂ V is the reverse star of v, i.e., R(v) = {v′′ ∈ V | (v′′, v) ∈ E}. With this

reward, the bound calculation remains a longest-path problem in an acyclic graph and it can

be shown using the same arguments as in [17] that the dynamic bound is valid.

3.2.2 Static Bound

Algorithm 1 requires one longest-path calculation in the time-expanded network for each

vertex in the forward star of the current vertex to compute the required bounds dt(vt, t) (see

Step 5). The approach of Algorithm 1 with dynamic bound follows the traditional approach

of branch-and-bound algorithms where the bound is reoptimized before each branching. In

the present case, the reoptimization corresponds to the longest-path calculation and requires

computing the arc rewards cn,n′ , see (10). These calculation can be time-consuming as

they typically involve a moderately large Markov transition matrix Γ and associated matrix

multiplication. We propose to use a static bound instead of the dynamic bound proposed in

[17] and described in Subsection 3.1. As shown below, all the necessary static bounds are

computed prior to any branching and are not recomputed later.

The dynamic bound dt(vt, t) (see Subsection 3.1) uses information about search along

a current subpath {vl}t
l=0. However, the bound remains valid if the effect of search along

the current subpath is ignored. This follows from the same arguments as in the proof of

the validity of dt(vt, t), see [17]. We denote the new bound d0(vt, t), where the subscript 0

indicates that the trivial subpath {v0} is used in (10) with t = 0 instead of the subpath

{vl}t
l=0, which dt(vt, t) utilizes. Hence, the only difference between dt(vt, t) and d0(vt, t) is

that pΓ(·, ·; t) is replaced by pΓ(·, ·; 0) in (10). However, this difference makes the bound

d0(vt, t) independent of the current subpath used to reach the vertex vt. Hence, d0(v, t) can

be computed in advance for all nodes 〈v, t〉 ∈ N , and dynamical computation of bounds

is not required. Consequently, the arc rewards (10) and bounds are computed only once.

We refer to d0(v, t) as the static bound. We observe that it is not necessary to carry out

11



a longest-path calculation from each node 〈v, t〉 ∈ N to 〈v̂, T + 1〉 to obtain d0(v, t). It is

more efficient to carry out the longest-path calculations backward from node 〈v̂, T + 1〉 to

all nodes. This calculation simply amounts to applying once a shortest-path algorithm to

the time-expanded network with arc lengths equal to the negative rewards.

In Step 5 of Algorithm 1, we now simply use d0(vt, t) instead of dt(vt, t). Thus, the

modified algorithm does not require any longest-path calculation in Step 5. All bound cal-

culations are done prior to Step 0. Clearly, the modified approach results in a weaker bound

and the need for more branching attempts. However, the additional branching attempts may

be compensated by shorter per-iteration computing times.

In order to examine the effect of the static bound d0(vt, t), we examine the same numer-

ical example as in [17]: An area of interest consists of 11 by 11 cells. The searcher operates

only at one altitude and its moves are restricted to vertically and horizontally adjacent cells,

excluding diagonal moves. The target remains in the current cell with a probability ρ or

moves to one of the vertically or horizontally adjacent cells with probability 1 − ρ. The

different moves are equally likely. The searcher departs cell 1 (v0 = 1), where the cells are

numbered from left to right and from top to bottom. Hence, cell 1 is the upper-left-corner

cell. The target starts at the center cell, i.e., at cell 61. The time horizon T = 17.

We implemented Algorithm 1 with static bound using Microsoft Visual C++ 6.0 on a

desktop computer with a 3.4 GHz Intel Pentium IV processor, 1.0 gigabytes of RAM, and

the Microsoft Windows XP operating system. Table 1 shows, for a range of constant glimpse

detection probabilities g(v, v′, t) and “stay probabilities” ρ, the run times (in seconds) and

numbers of bounding attempts of Algorithm 1 as well as those reported in [17]. We especially

consider the case of high glimpse detection probability (g(v, v′, t) = 0.99), in which both static

and dynamic bounds tend to be relatively weak. Column 3 of Table 1 presents the resulting

run times for Algorithm 1 with static bound. The corresponding run times reported from [17]

are found in column 5. (The case g(v, v′, t) = 0.99 is not considered in [17].) Those reported

numbers are achieved on a 2.6 GHz Opteron 152 processor computer using Matlab. Hence,

a direct comparison between the run times in columns 3 and 5 is difficult. However, we find
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reports of run times for other problem instances using a C++ implementation in [17]. A brief

comment in [17] based on a single problem instance indicates that the Matlab implementation

is 15.6 times slower than the C++ implementation. For the sake of comparison, we scale

down the run times in column 5 of Table 1 with 1/15.6 to approximately account for the

slower Matlab implementation. We also scale down the run times of column 5 by a factor

of 2.6/3.4 to account for the slower computer used in [17]. The resulting scaled down run

times are presented in column 6 of Table 1. We observe that the scaled down run times

for Algorithm 1 with dynamic bound are somewhat faster than the corresponding run times

with static bound. However, the static bound, which is weaker than the dynamic bound,

remains fairly competitive, especially for more difficult problem instances.

We compare the strengths of the static and dynamic bounds by counting the number of

branching attempts required in Algorithm 1. Columns 4 and 7 of Table 1 give the numbers

of branching attempts for the static and dynamic bounds, respectively. The number of

branching attempts for the static bound is, on average, 37 times larger than in the case of

the dynamic bound. We observe that the greater number of bounding attempts is partially

compensated for by avoiding dynamical reoptimization of the bound.

For a direct comparison between the static and dynamic bounds, we implement Algo-

rithm 1 with dynamic bound in Microsoft Visual C++ 6.0. We made a significant effort to

ensure that the implementation is efficient, including efficient handling of sparse matrices.

Column 8 and 9 of Table 1 report the run times and the number of branching attempts for

our implementation of Algorithm 1 with dynamic bound, respectively. We observe that our

implementation results in identical numbers of branching attempts compared to the imple-

mentation in [17]. When comparing columns 6 and 8, we see that our implementation of

the dynamic bound results in somewhat longer run times than the scaled times from [17].

However, the longer times in column 8 compared to column 6 can partially be due to an

excessively aggressive scaling of run times going from column 5 to column 6.

While implementing the dynamic bound, we noted a significant challenge associated

with efficient matrix multiplication and data handling. Since the dynamic bound dt(v, t) is
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reoptimized a large number of times, it is paramount to carry out the related calculations

efficiently. In comparison, it is rather trivial to implement a static bound. It is not critical

to carry out the longest-path calculations highly efficiently in the static case as they are only

done once.

We also observe that both static and dynamic bounds tend to be weaker when the target

is near stationary (e.g., ρ = 0.9) and glimpse detection probability is large (e.g., g(v, v′, t) =

0.9 or 0.99). For these problem instances, the implementation with dynamic bound is more

sensitive to the change in data. In fact, comparing the instance (g(v, v′, t) = 0.9 and ρ = 0.9)

to the instance (g(v, v′, t) = 0.99 and ρ = 0.9), we see that the run time and the number

of branching attempts in the case of the dynamic bound become 1.29 and 1.48 times larger,

respectively. On the other hand, the static bound is less sensitive, and its numbers become

only 1.09 times larger. These numbers indicate that it becomes even less worthwhile to invest

time in dynamic bound calculations when the bounds are relatively weak anyways.

3.2.3 Directional Static Bound

As seen from Table 1, the static bound is substantially weaker than the dynamic bound. We

derive a stronger static bound motivated by the classical approach to handling turn-radius

constraints in vehicle routing problems [4].

In the longest-path calculations for the static bound, the reward of arc (〈v, s〉, 〈v′, s+1〉)
is, effectively, the probability of detection at vertex v′ during time period s + 1 and no

detection at vertex v during time period s. Of course, this overestimates the probability of

detection at vertex v′ during time period s + 1 and no prior detections, as detection could

occur prior to time period s. We strengthen the static bound if we redefine the arc reward

to be the probability of detection at vertex v′ during time period s + 1 and no detection at

vertex v during time period s and no detection at the vertex visited during time period s−1.

However, redefining the arc reward to depend not only on the arc’s head and tail nodes, but

also on a previous node ruins the longest-path structure of the bound-calculation problem.

A similar situation arises in vehicle routing problems for vehicles with turn-radius con-

14



straints or penalties. The classical approach to handle that situation is to duplicate each

node a number of times equal to the number of nodes in the node’s reverse star. An arc in

the resulting “node-expanded” network then carries information about three nodes, not only

two, and a desirable network structure of the problem can be maintained. Fortunately, it

is practical to carry out such a node-expansion approach in the problems of interest in this

paper because the number of nodes in the reverse star is typically quite moderate. Hence,

we proceed along the stated lines and develop a node-and-time expanded network, in which

the improved static bound can be calculated by solving a longest-path problem. We refer to

this improved bound as the directional static bound.

For any n′ ∈ N , let R(n′) ⊂ N be the reverse star of n′, i.e., R(n′) = {n ∈ N|(n, n′) ∈
A}. Then, for any n, n′ ∈ N\{n̂} such that (n, n′) ∈ A, we define an expanded node

ξ = 〈n, n′〉. We do not expand the end node, so we set ξ̂ = n̂. Let Ξ be the set of all

expanded nodes. Two expanded nodes ξ, ξ′ ∈ Ξ are connected by an expanded arc (ξ, ξ′)

if ξ = 〈n, n′〉 and ξ′ = 〈n′, n′′〉. Let the set of all expanded arcs be Ω. The node-and-time

expanded graph is illustrated in Figure 4.

We endow each expanded arc in the node-and-time expanded graph (Ξ, Ω) with a reward

similar to (10). To derive the exact form of this reward, we need the following building blocks.

For any v, v′ ∈ V and t ∈ T , let Mt(v, v′) be a C by C identity matrix with the φ(v′)-th

diagonal element set equal to 1− g(v, v′, t). We also let Γ(v′) be the φ(v′)-th column of the

Markov transition matrix Γ.

From (2) and the recursive application of (1), we see that the probability of detection

along a path {vl}T
l=0 is given by

q({vl}T
l=0) = p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)M1(v0, v1)ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) + (11)

p(·, 1)M1(v0, v1)ΓM2(v1, v2)ΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +

...
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p(·, 1)M1(v0, v1)ΓM2(v1, v2)ΓM3(v2, v3) · . . . · ΓMT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).

The expression (11) gives insight into a class of bounds on the probability of detection

including the static bound d0(vt, t). If we replace Mt(·, ·) by the identity matrix in (11), we

find that

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)Γ(v2)g(v1, v2, 2) +

p(·, 1)ΓΓ(v3)g(v2, v3, 3) + (12)

p(·, 1)ΓΓΓ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−2Γ(vT )g(vT−1, vT , T ).

In (12), the “reward” received during a time period is simply the expected number of detec-

tion during that time period and depends only on the current and previous vertices. Hence,

it is possible to compute an upper bound on the optimal probability of detection by finding

a path {vl}T
l=0 that maximizes the right-hand side in (12). This calculation amounts to a

longest-path problem and is, in fact, the approach in [18]. (Note, however, that [18] assumes

that the glimpse detection probability is independent of the previous vertex.)

If we replace each Mt(·, ·) by the identity matrix everywhere except the last matrix of

each line in (11), we obtain

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) + (13)

p(·, 1)ΓΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−2MT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).

Now, the reward received during each time period also depends on the searcher’s position

two time periods ago and the problem of finding a path that maximizes the right-hand side
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is no longer a longest-path problem. However, the bound remains valid with the following

minor modification, where the maximization of a matrix with a single element different from

zero or one is simply the maximization of that element:

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)

(
max

v∈R(v1)
M1(v, v1)

)
Γ(v2)g(v1, v2, 2) +

p(·, 1)Γ

(
max

v∈R(v2)
M2(v, v2)

)
Γ(v3)g(v2, v3, 3) + (14)

p(·, 1)ΓΓ

(
max

v∈R(v3)
M3(v, v3)

)
Γ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−2

(
max

v∈R(vT−1)
MT−1(v, vT−1)

)
Γ(vT )g(vT−1, vT , T ).

After this modification, we see that the reward during each time period only depends on

the current and previous vertices. Hence, again, it is possible to compute an upper bound

on the optimal probability of detection by solving a longest-path problem. In fact, this is

exactly the approach we described in Subsection 3.2.1 and it can be shown that the reward

in the longest-path problem cn,n′ , see (10), can be deduced from (14). Specifically, when the

current subpath in (10) is {v0}, we have for arc (n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A that

cn,n′ = p(·, 1)Γs−1

(
max

v′′∈R(v)
Ms(v

′′, v)

)
Γ(v′)g(v, v′, s + 1). (15)

Using similar arguments, we define the directional static bound as follows. Clearly,

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)

(
max

v∈R(v1)
M1(v, v1)

)
ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) + (16)

p(·, 1)Γ

(
max

v∈R(v2)
M2(v, v2)

)
ΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−3

(
max

v∈R(vT−2)
MT−2(v, vT−2)

)
ΓMT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).
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Hence, we can compute an upper bound on the optimal probability of detection by finding

a path {vl}T
l=0 that maximizes the right-hand side of (16). This calculation amounts to

a longest-path problem in the node-and-time expanded graph (Ξ, Ω). The arc reward in

this longest-path problem is deduced from (16). Specifically, an expanded arc (ξ, ξ′) =

(〈n′′, n〉, 〈n, n′〉) ∈ Ω, with n′′ = 〈v′′, s− 1〉, n = 〈v, s〉, and n′ = 〈v′, s + 1〉, is endowed with

the reward

cξ,ξ′ = p(·, 1)Γs−2

(
max

v′′′∈R(v′′)
Ms−1(v

′′′, v′′)

)
ΓMs(v

′′, v)Γ(v′)g(v, v′, s + 1). (17)

We refer to the node-and-time expanded graph (Ξ, Ω) with the arc rewards cξ,ξ′ from (17) as

the node-and-time expanded network. Since the node-and-time expanded graph is acyclic,

longest-path problems are solvable by standard shortest-path algorithms.

In view of the above discussion, we obtain the following result.

Proposition 1 For any v′ ∈ V and t ∈ T , let

(i) d0(v
′, t) be the value of the longest-path from node 〈v′, t〉 to node n̂ in the time-expanded

graph (N ,A) with arc rewards given by (15), and

(ii) δ0(v, v′, t) be the value of the longest-path from expanded node 〈〈v, t − 1〉, 〈v′ t〉〉 to

expanded node ξ̂ in the node-and-time expanded graph (Ξ, Ω) with arc rewards given by

(17).

Then, both d0(v
′, t) and δ0(v, v′, t) are upper bounds on the probability of detection during

time periods t + 1, t + 2, ..., T for any path {vl}T
l=0 with vt−1 = v and vt = v′. Moreover,

δ0(v, v′, t) ≤ d0(v
′, t).

We refer to δ0(v, v′, t) as the directional static bound and see from Proposition 1 that it

is at least as strong as the static bound. We demonstrate in an empirical study below that

it may be substantially stronger.

Clearly, building the node-and-time expanded graph (Ξ, Ω), computing the associated

rewards, and calculating the longest-paths take some computing time. However, the process
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is only carried out once before the start of Algorithm 1 and the computed bounds are stored

for later use. Hence, the time for computing the directional static bounds remains small

compared to the overall run time of Algorithm 1. We conjecture that the use of the node-

and-time expanded graph (Ξ, Ω) with dynamic reoptimization of bounds will not be efficient

due to the small but significant effort required to build the node-and-time expanded graph,

compute associated arc rewards, and carry out the longest-path calculations. We observe

that this conjecture appears to be aligned with [17], which eludes to the inefficiency of a

dynamic bound based on more than one-time-step look-behind.

In Table 2, we report computational results for Algorithm 1 with the directional static

bound applied to the same problem instances as in Table 1. Columns 3 and 4 give run times

and number of branching attempts, respectively, for Algorithm 1 using the directional static

bound. We observe that, on average, the number of branching attempts has been reduced

to 58.1% by using the directional static bound compared with the static bound. (Compare

column 4 in Table 1 with column 4 in Table 2.) Similarly, the run times have been reduced to

58.2% by using the directional static bound. Since the reduction in branching attempts and

run time are essentially identical, we conclude that the time for computing the directional

static bound is small compared to the overall run time.

3.2.4 Network Reduction

In some practical situations, the searcher’s and the target’s initial positions are relatively far

from each other. Hence, for a number of time periods the searcher will only examine cells

where the target is guaranteed not to be located. In these initial moves, the searcher is simply

positioning itself for the later search. This is the situation in the numerical examples of [17].

In this subsection, we derive a network reduction technique that utilizes this situation.

Consider the time-expanded graph (N ,A). Suppose that the searcher flies, for the first

s time periods, along a subpath {nt}s
t=0, with nt = 〈vt, t〉, such that p(φ(vt), t) = 0 for

all t < s, and p(φ(vs), s) > 0. Then, the searcher cannot detect the target prior to time

period s. We refer to the last node ns of the subpath {nt}s
t=0 as a node-of-first-contact. It is
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typically straightforward to determine a set of nodes-of-first-contact by applying a standard

search algorithm ([1], pages 73-77) on the time-expanded network. In Figure 5, we illustrate

a situation where the searcher can at the earliest detect the target during time period 4, and

also note that the time period of all nodes-of-first-contact 〈vs, s〉 ∈ N is s ≥ 4.

We observe that there might be several different subpaths {nt}s
t=0, nt = 〈vt, t〉, to reach

a node-of-first-contact 〈vs, s〉 ∈ N . However, the subpath used to reach 〈vs, s〉 is of no or

little importance. In fact, if g(vs−1, vs, s) does not vary with the choice of vs−1, all subpaths

to 〈vs, s〉 have probability of detection equal to p(φ(vs), s)g(vs−1, vs, s), with p(φ(vs), s) =

p(·, 1)Γs−2Γ(vs). Thus, it is enough to find a subpath to each node-of-first-contact 〈vs, s〉
using a standard search algorithm, connect initial node 〈v0, 0〉 to 〈vs, s〉 directly with a

“jump” arc representing the move to 〈vs, s〉, and ignore time periods 1, 2, ..., s−1 during the

branch-and-bound algorithm. Clearly, this procedure may reduce the amount of branching

attempts significantly. We can generalize this to the case with g(vs−1, vs, s) varying with

respect to vs−1, as discussed in Subsection 4.2.3.

If a lower bound q̂ on the optimal probability of detection is available in advance of the

network reduction procedure described above, it may not be necessary to consider all nodes-

of-first-contact. Fortunately in TCSP, a lower bound is trivially obtained by computing

the probability of detection along the path corresponding to the static bound d0(v0, 0).

Furthermore, for each node-of-first-contact 〈vs, s〉, an upper bound on the probability of

detection after time period s with no prior detections (e.g., the static bound d0(vs, s)) is

available in advance of both branch-and-bound and network reduction procedures. The

upper and lower bounds can be used to eliminate some nodes-of-first-contact that cannot lie

on an optimal path. Specifically, if p(φ(vs), s)g(vs−1, vs, s) + d0(vs, s) ≤ q̂, we can eliminate

〈vs, s〉 and all incoming and outgoing arcs. Thus, the amount of branching attempts may be

reduced further.

In order to take advantage of this reduced network in the branch-and-bound algorithm,

we construct a second algorithm (Algorithm 2) that generalizes the branch-and-bound mech-

anism of Algorithm 1. Before we describe the algorithm, we need to clarify some notation.
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After the algorithm is presented, we describe the network reduction procedure in detail.

Given a subpath {nl}k
l=0, nl = 〈vl, l〉, k ∈ T , let K(i), as before, be the set of triplets

(vt, t, q̄(vt, t)) representing extensions of {nl}k
l=0 yet to be explored. Now, the index i of K(i)

refers to the depth from node 〈v0, 0〉 to the next node 〈vt, t〉 in the branch-and-bound tree.

Since 〈v0, 0〉 is directly connected to each node-of-first-contact 〈vs, s〉, the corresponding

depth in the branch-and-bound tree is 1. For reporting purposes, a subpath {nl}s
l=0 is stored

for each node-of-first-contact 〈vs, s〉.

Algorithm 2.

Step 0. Calculate δ0(v, v′, t) for all t ∈ T and v, v′ ∈ V such that (v, v′) ∈ E or d0(v
′, t) for

all t ∈ T and v′ ∈ V , and calculate a lower bound q̂. Set i = 0,K(i) = {(v0, 0,∞)}.

Step 1. If K(i) is empty, replace i by i− 1. Else, go to Step 3.

Step 2. If i = 0, stop: the last saved path is optimal and q̂ is its probability of detection.

Else, go to Step 1.

Step 3. Remove from K(i) the triplet (vt, t, q̄(vt, t)) with the largest bound q̄(vt, t).

Step 4. If q̄(vt, t) ≤ q̂, go to Step 1. (Current subpath is fathomed.)

Step 5. If i = 0, replace i by i + 1, and go to Step 3. (K(1) is populated in the network

reduction procedure.)

Step 6. If t < T , then for each vertex v ∈ F(vt), calculate q̄(v, t+1) from (5) using bounds

d0(v, t + 1) or δ0(vt, v, t + 1), and add (v, t + 1, q̄(v, t + 1)) to K(i + 1). Replace i by

i + 1, and go to Step 3. Else, let q̂ = q̄(vt, t) and save the incumbent path {vl}T
l=0, and

go to Step 1.

We now present the network reduction procedure that can be implemented as part of

Step 0 of Algorithm 2. The procedure assumes that a static bound d0(v
′, t) is available as well

as a lower bound on the optimal probability of detection q̂. If the directional static bound is

available instead of the static bound, replace d0(v
′, t) by δ0(v, v′, t) in the procedure below.
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We note again that the network reduction procedure is valid under the assumption that

g(vs−1, vs, s) does not vary with the choice of vs−1 ∈ R(vs) among all nodes-of-first-contact

〈vs, s〉. We generalize this in Section 4.

Network Reduction Procedure R1.

Step 1. Find all nodes-of-first-contact 〈vs, s〉 ∈ N . If none exist with s > 1, then stop.

Step 2. For each 〈vs, s〉, calculate q̄(vs, s) = p(φ(vs), s)g(vs−1, vs, s) + d0(vs, s).

Step 3. Eliminate all nodes-of-first-contact 〈vs, s〉 with q̄(vs, s) ≤ q̂.

Step 4. For each nodes-of-first-contact 〈vs, s〉 not eliminated, store the triplet (vs, s, q̄(vs, s))

in K(1).

Table 2 illustrates the effect of the network reduction technique as applied to the same

problem instances as in Table 1. Columns 5 and 6 of Table 2 present the run time and

number of branching attempts, respectively, for Algorithm 2 with static bound and network

reduction. On average, the run times and and the branching attempts are reduced to 5.3%

and 5.0% of the corresponding numbers obtained without the network reduction technique

(see columns 3 and 4 in Table 1), respectively. When applying both network reduction

and directional static bound, we obtain the run times and numbers of branching attempts

reported in columns 7 and 8 of Table 2. It is clear that network reduction and directional

static bound have complementary positive effect and the run times and numbers of branching

attempts are further reduced.

Table 3 presents computational results for a larger problem instance with 15 by 15

cells and a time horizon T = 20. Again, the searcher starts in the upper-left cell and the

targets starts in the center cell. As seen from Table 3, the run times remain rather short

for Algorithm 2 with directional static bound and network reduction (columns 3 and 4)

while the times increases dramatically for Algorithm 1 with dynamic bound (columns 5 and

6). Furthermore, Algorithm 2 with directional static bound and network reduction is less

sensitive to the detrimental effect of a near stationary target (e.g., ρ = 0.9) and high glimpse
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detection probability (e.g., g(v, v′, t) = 0.9 or 0.99), a case where the bounds tend to be

weak.

The same problem instances were also examined in [17], which reports a run time of

10.9 seconds for the case with g(v, v′, t) = 0.6 and ρ = 0.6 using a C++ implementation

of Algorithm 1 with a dynamic bound running on a 2.6 GHz computer. We observe that

our implementation appears to be somewhat slower than the one achieved in [17] with 30.47

seconds compared to 10.9 seconds (on a presumedly slightly slower computer). However,

Algorithm 2 with directional static bound and network reduction appears to offer a noticeable

advantage over Algorithm 1 with dynamic bound as derived in [17]. In principle, Algorithm

1 with dynamic bound can also be speeded up by using the proposed network reduction

technique. However, we have not examined that possibility. We adopt a directional static

bound with network reduction as the basis for extension to the case with side constraints

discussed in the next section.

4 Algorithm for Resource-Constrained Search Problem

We now turn the attention to the full problem with side constraints, i.e., the resource-

constrained search problem (RCSP) formulated in Section 2. We first develop a static bound

based on Lagrangian relaxation that can be used within a branch-and-bound algorithm in

the form of Algorithms 1 and 2. Second, we briefly discuss the development of a Lagrangian

directional static bound. Third, we develop a series of network reduction techniques. Fourth,

we combine the resulting procedures and present the complete algorithm.

4.1 Lagrangian Static Bound

Consider the time-expanded network (N ,A), see Subsection 3.1, with the arc rewards cn,n′

given in (15). Now, we also endow each arc (n, n′) ∈ A, n = 〈v, t − 1〉 and n′ = 〈v′, t〉,
with weights ri,n,n′ = fi(v, v′, t), i ∈ I. While computing the static bound in the case of no

side constraints amounts to solving a longest-path problem on the time-expanded graph, a

similar bound in the case with side constraints will need to account for those constraints.
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Specifically, a static bound can be obtained by solving a constrained longest-path problem.

We formulate this problem as an integer program on a slightly modified time-expanded

graph.

We use the same time-expanded graph as in Subsection 3.1, with the following modifi-

cations. We recall that V̂ is the set of vertices where the search can end. Now, every node

n = 〈v, t〉, v ∈ V̂ , t ∈ T is connected to the artificial destination node n̂ with an arc. This

modification allows the searcher to terminate the search prior to time period T to avoid vio-

lating the side constraints. Furthermore, all arcs (n, n̂) with n = 〈v, T 〉, v /∈ V̂ , are removed

from the time-expanded network. This modification makes the searcher return to v ∈ V̂ . We

still let A denote the set of all arcs.

We formulate the constrained longest-path problem on the time-expanded graph (N ,A)

as an integer program. We consider an ordering of A and let A denote the |N | by |A|
node-arc incidence matrix for the time-expanded graph. For each arc a = (n, n′) ∈ A, let

An,a = 1, An′,a = −1, and An′′,a = 0 for any n′′ ∈ N , n′′ 6= n, n′ be the elements of A. Let

b denote the |N |-vector with bn0 = 1, bn̂ = −1 and bn = 0 for all n ∈ N\{n0, n̂}. We also

define the additional notation: r̂ = (r̂1, r̂2, . . . , r̂I)
T , where T denotes the transpose. We

collect the rewards cn,n′ in the |A|-dimensional row vector c. Moreover, for each i ∈ I, we

define the |A|-dimensional row vector ri to contain the weights ri,n,n′ and we let R be the

|I| by |A| matrix with ri as its rows. Finally, we let x be a |A|-dimensional column vector,

where xn,n′ = 1 if arc (n, n′) is used by a path, and zero otherwise. Then, the constrained

longest-path problem, see [1], can be written as:

z∗ ≡ max
x∈{0,1}|A|

cx (18)

s.t. Ax = b

Rx ≤ r̂. (19)

In principle, the solution of the constrained longest-path problem provides a static bound.

However, the constrained longest-path problem is NP-complete even for the case with an

acyclic graph ([13], pages 213-214). Hence, we prefer to avoid solving such problems within
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an algorithm. We proceed by introducing an additional relaxation that is motivated by the

solution approach for the constrained shortest-path problem in [14, 5, 6].

Using the standard theory of Lagrangian relaxation (see, e.g., [1], Chapter 16) and an

|I|-dimensional row vector λ ≥ 0, we find that

z∗ ≤ z(λ) ≡ max
x∈{0,1}|A|

cx − λ(Rx− r̂) (20)

s.t. Ax = b.

Rewriting the objective function, we can optimize the Lagrangian upper bound z(λ) through

z̄ ≡ min
λ≥0

z(λ) (21)

= min
λ≥0

max
x∈{0,1}|A

(c− λR)x + λr̂ (22)

s.t. Ax = b.

For any fixed λ ≥ 0, computing the upper bound z(λ) simply requires the solution of

a longest-path problem with Lagrangian-modified arc lengths in an acyclic graph. The

outer minimization over λ can be solved by several methods [12, 3, 9, 5, 6]. Since we

anticipate only a small number of side constraints, it suffices to use repeated coordinate

search. Given an optimal or near-optimal λ, we obtain the Lagrangian static bound by

carrying out one backward longest-path calculation in the time-expanded graph from node

n̂ to all nodes n ∈ N using the Lagrangian modified arc reward c− λR. More specifically,

an arc (n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A, s = 1, 2, ..., T − 1, is endowed with the reward

c̃n,n′ = cn,n′ −
∑

i∈I
λiri,n,n′ , (23)

where cn,n′ is given by (15).

We also derive and implement a Lagrangian directional static bound similar to the one

in Subsection 3.2.3. However, the derivation is a straightforward combination of Subsection

3.2.3 and the approach described above. Hence, we omit it. This derivation results in

a similar Lagrangian problem to the one in (21), but now defined on the node-and-time

expanded network. We still refer to the Lagrangian multiplier as λ and the Lagrangian

25



upper bound as z(λ). We denote the Lagrangian directional static bound computed in this

way by δ̃0(v, v′, t). Since the Lagrangian directional static bound is at least as strong as the

Lagrangian static bound, we carry out the Lagrangian relaxation only in the node-and-time

expanded network to find a Lagrangian multiplier λ ≥ 0.

4.2 Network Reduction

We propose and examine three techniques for reducing the size of the network prior to appli-

cation of a branch-and-bound procedure. First, we use dominance rules to eliminate edges

that cannot be on an optimal path. Second, we describe the application of “preprocessing”

techniques frequently used prior to solving constrained shortest-path problems. Third, we

modify the procedure described in Subsection 3.2.4.

4.2.1 Edge Dominance

There are several situation where a vertex v′ ∈ F(v) can be eliminated as candidate for visit

from vertex v. Such “dominance tests” are case dependent, but can be effective in reducing

the number of edges. We describe one situation where we use “edge dominance.”

In many practical situation, there are two resources: risk and fuel. If higher altitude

implies lower risk and lower glimpse detection probability, and climbing to higher altitude

consumes more fuel than level flight, then we can eliminate some edges in the graph (V , E)

by “edge dominance.” Suppose that f1(v, v′, t) and f2(v, v′, t) represent risk and fuel, respec-

tively. Also suppose that the risk f1(v, v′, t) = f1(v
′), i.e., only depends on v′. Let ψ(v) be

the altitude of waypoint v ∈ V . Then, if we have the above described situation, we use the

following (one-step) procedure to reduce the size of the graph (V , E).

Edge Dominance Procedure R2.

Step 1. Delete any edge (v, v′) ∈ E that satisfies f1(v
′) = 0 and ψ(v) < ψ(v′).

We note that Procedure R2 takes advantage of the fact that if there is no risk at v′, then

there is no need to increase altitude when moving from v to v′. The altitude can be increased

later if need be.
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4.2.2 Preprocessing

It is well known that the side constraints (19) can be used, prior to any main calculations, to

identify nodes and arcs in the time-expanded network (N ,A) that cannot lie on any feasible

path [2, 10, 5, 6]. Such nodes and arcs can be eliminated from (N ,A), which reduces the

size of the problem that needs to be considered when computing bounds and carrying out

branching. Moreover, the reduction of the time-expanded network typically also strengthens

the Lagrangian relaxation, i.e., reduces the gap z∗− z̄, see (21) and (20), and, hence, reduces

the need for branching. We adopt the follow procedure, adapted from [5, 6], to carry out arc

preprocessing:

Preprocessing Procedure R3.

Step 1. Set number of iterations k̄ and k = 1.

Step 2. For all i ∈ I and n ∈ N , compute a minimum-weight n0-n subpath distance Ri(n)

and a minimum-weight n-n̂ subpath distance ri(n) in (N ,A) with respect to weights

ri,n,n′ .

Step 3. Delete any arc (n, n′) ∈ A with

Ri(n) + ri,n,n′ + ri(n
′) > r̂i for any i ∈ I. (24)

Step 4. If k < k̄ and at least one arc was deleted in Step 3, replace k by k + 1, and go to

Step 2. Else, stop.

If a lower bound on the probability of detection is available, we also carry out similar

preprocessing with respect to arc reward cn,n′ and the Lagrangian modified arc reward c̃n,n′ =

cn,n′ −∑
i∈I λiri,n,n′ , see [5, 6].

We describe the preprocessing procedure for the time-expanded network and argue that

it improves the Lagrangian static bound. However, the same methodology applies to the

node-and-time expanded network and it improves the Lagrangian directional static bound.

In our main algorithm (described in Subsection 4.3), we also apply preprocessing to the

node-and-time expanded network and denote that procedure R3′.
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4.2.3 Vertex Dominance for Distant Target

As in Subsection 3.2.4, we consider the case where the searcher’s and the target’s locations

are initially some distance apart and derive a network reduction procedure that utilizes that

situation. In contrast to Subsection 3.2.4, the subpath used to reach a node-of-first-contact

is now important since the resource consumption along different subpaths may be different.

Hence, 〈v0, 0〉 now needs to be connected to each node-of-first-contact 〈vs, s〉 with multiple

“jump” arcs representing the different possible subpaths and resource consumptions used

to reach 〈vs, s〉. A standard path enumeration algorithm (see, e.g., [7]) can enumerate the

different subpaths, at least as long as s is relatively small. Multiple arcs to a node-of-

first-contact can also be used to model the situation with edge-dependent glimpse detection

probability, a case ignored in Subsection 3.2.4.

After all the arcs are generated to all the nodes-of-first-contact, a number of them can

be deemed uninteresting and be eliminated using dominance rules of the form: If an arc

from 〈v0, 0〉 to 〈vs, s〉 has no larger probability of detection and no smaller consumption

of each resource as another parallel arc and the two arcs are not identical, the first arc is

dominated and can be eliminated. In sets of identical parallel arcs, we also eliminate all

but one. Trivially, arcs with resource consumption greater than the specified limits are also

removed. Moreover, if a lower bound on the optimal probability of detection exists, it can

be used to eliminate more arcs as described in the following.

Below we describe this network reduction procedure based on vertex dominance for dis-

tant target formally. We note that the procedure is more effective after (i) applying network

reduction procedures R2, R3 and R3′, (ii) finding λ that (approximately) optimizes the La-

grangian upper bound z(λ) on the node-and-time expanded network, and (iii) computing the

directional static bound δ0(v, v′, t) and the Lagrangian directional static bound δ̃0(v, v′, t) for

each node 〈v′, t〉 ∈ N . So we assume that these calculations have been carried out. During

these calculations, feasible paths may be obtained. Such paths provide lower bounds on the

optimal probability of detection. Let q̂ denote the largest lower bound found so far.
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Vertex Dominance Procedure R4.

Step 1. Find all nodes-of-first-contact 〈vs, s〉 ∈ N . If none exist with s > 1, then stop.

Step 2. For each node-of-first-contact 〈vs, s〉, enumerate all subpaths 〈v0, 0〉 to 〈vs, s〉.

Step 3. For each node-of-first-contact 〈vs, s〉 and subpath P = {vl}s
l=0, carry out the tests:

If any of the following is true, then eliminate P :

(i) For some remaining 〈v0, 0〉-〈vs, s〉 subpath P ′, ri(P) ≥ ri(P ′) for all i ∈ I and

q(P) ≤ q(P ′).

(ii) q(P) + δ0(vs−1, vs, s) ≤ q̂.

(iii) ri(P) + ri(〈vs, s〉) > r̂i for some i ∈ I.

Step 3 can also be augmented with a test on the Lagrangian-modified probability of detection

using δ̃0(v, v′, t) if a near-optimal multiplier λ is available.

4.3 Algorithm

We now state the complete algorithm for RCSP. The algorithm starts with network reduc-

tions procedures R2, R3, and R3′. The next step solves the Lagrangian problem (22) and

determines a near-optimal λ. (The calculations are actually carried out in the node-and-time

expanded network as we prefer to use the Lagrangian directional static bound.) If a feasible

path becomes available during the procedures described above, network reduction procedure

R3′ is repeated now using checks with respect to arc reward cξ,ξ′ and its Lagrangian modi-

fied arc reward. The next steps are to compute the directional static bound of Subsection

3.2.3 (i.e., δ0(v, v′, t)), the Lagrangian directional static bound as described in Subsection 4.1

(i.e., δ̃0(v, v′, t)), and bounds on resource consumption along any path extension (i.e., ri(n),

i ∈ I). The final steps before the branch-and-bound procedure is to implement network

reduction procedure R4.

We implement the branch-and-bound procedure as an implicit path-enumeration in the

time-expanded network. The procedure amounts to a depth-first search coupled with opti-
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mality and feasibility checks using the computed bounds. The complete algorithm takes the

following form:

Algorithm 3.

Step 1. Apply network reduction procedures R2, R3 and R3′.

Step 2. Find λ that approximately optimizes the Lagrangian upper bound z(λ) in the node-

and-time expanded graph (Ξ, Ω). If a feasible solution is found, set the probability of

detection on the corresponding path equal to q̂. Otherwise, set q̂ = −∞.

Step 3. If a feasible solution is found so far, implement R3′ also with respect to arc reward

and Lagrangian modified arc reward using q̂.

Step 4. Ignoring side constraints, compute the directional static bound δ0(v, v′, t) for all

expanded nodes ξ = 〈n, n′〉 in (Ξ, Ω), with n = 〈v, t− 1〉, n′ = 〈v′, t〉, v, v′ ∈ V .

Step 5. Using λ from Step 2, compute the Lagrangian directional static bound δ̃0(v, v′, t)

for all expanded nodes ξ = 〈n, n′〉 in (Ξ, Ω), with n = 〈v, t− 1〉, n′ = 〈v′, t〉, v, v′ ∈ V .

Step 6. For each i ∈ I, compute the minimum distance ri(n) from each node n ∈ N back

to n̂ by solving a single, backwards, shortest-path problem in the time-expanded graph

(N ,A) starting from n̂ using arc length ri,n,n′ .

Step 7. Apply network reduction procedure R4.

Step 8. Apply a standard path-enumeration procedure (see, e.g., [7]) in (N ,A) with the

following modifications:

(i) The path-enumeration commences from n0, but extends a current subpath {nl}t
l=0

along arc (nt, n) = (〈vt, t〉, 〈v, t + 1〉) if and only if the following conditions hold:

• For all i ∈ I, {n0, n1, ..., nt, n} can be extended to a path whose i-th resource

does not exceed r̂i, i.e.,

ri({n0, n1, ..., nt, n}) + ri(n) ≤ r̂i. (25)
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• {n0, n1, ..., nt, n} can be extended to a path with probability of detection ex-

ceeding q̂, i.e.,

q({n0, n1, ..., nt, n}) + δ0(vt, v, t + 1) > q̂. (26)

• {n0, n1, ..., nt, n} can be extended to a path whose Lagrangian-modified prob-

ability is no less than q̂, i.e.,

q({n0, n1, ..., nt, n})−
∑

i∈I

t∑

l=1

λiri,nl−1,nl
−∑

i∈I
λiri,nt,n + λr̂ + δ̃0(vt, v, t + 1) ≥ q̂.

(27)

(ii) Whenever the algorithm identifies a path P with q(P) > q̂ and ri(P) ≤ r̂i, i ∈ I,

replace q̂ by q(P).

In Step 8, the checks (25), (26), and (27) prevent the enumeration of paths that can

be determined, using the computed bounds, to not be optimal. Specifically, (25) prevents

the extension of subpaths that cannot result in a feasible path with respect to the side

constraints. Since δ0(vt, v, t + 1) is a valid upper bound on the probability of detection

during time period t + 2, t + 3, ..., T , the left-hand side of (26) is an upper bound on

the probability of detection along any path that starts with the subpath {n0, n1, ..., nt, n}.
Hence, the subpath cannot be extended to a path with larger probability of detection than

q̂ if (26) fails. In (27), the probability of detection along {n0, n1, ..., nt, n} is modified by

Lagrangian terms and the Lagrangian directional static bound is used. The resulting check

can be shown to be valid using standard Lagrangian relaxation theory and the argument

above.

We also implement Step 8 with a “branching strategy” based on the Lagrangian di-

rectional static bound. Specifically, we first consider extending the current subpath {nl}t
l=0

along the arc (nt, n) with the largest Lagrangian directional static bound among all the nodes

in the forward star of nt. Second, we consider extending {nl}t
l=0 with the node corresponding

to the second largest Lagrangian directional static bound, etc. This branching strategy is

analogous to the one in Step 3 of Algorithms 1 and 2. We also experimented with using the
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directional static bound instead of the Lagrangian directional static bound and found it to

usually result in comparable run times. However, the Lagrangian directional static bound

appears faster, on average.

Since Algorithm 3, in the worst case, enumerates all feasible paths, it is guaranteed to

find an optimal solution of RCSP.

5 Numerical Example

This section describes computational experiments with Algorithm 3 applied to RCSP with

side constraints on risk exposure and fuel consumption. We carry out all experiments on the

same computational platform as in Section 3.

We consider a military planning situation where a UAV is assigned a mission to search

and detect a high-value moving target. Planners wish to determine a flight path over the area

of interest (AOI) that maximizes the probability of detecting the target. The UAV will start

its path at a known waypoint with a known fuel tank, and will return to the same waypoint

before the fuel tank is empty. Doctrine specifies that the UAV cannot be assigned a path

with higher risk than a specific threshold. The AOI is partially under enemy control and any

aircraft flying over the AOI could be shot down by enemy surface-to-air missiles (SAMs),

anti-aircraft artillery, and small-arms fire. Flying at a high altitude would reduces that risk,

but it will also reduce the quality of the UAV’s sensor. Consequently, the UAV may change

altitude during the course of the mission to balance risk and sensor quality. Changing from

low to high altitude consumes more fuel than level flight. Hence, the number of time periods

available for search depends on the fuel consumption and therefore the vertical flight profile.

We model this situation by dividing the AOI into 10 by 10 cells (see Figure 6). The

airspace over each cell is vertically discretized into two altitudes (”low” and ”high”). The

heavily shaded cells (C1) in Figure 6 represent an urban area over which the UAV’s risk is

high and its glimpse detection probability is low. The unshaded cells (C3) represent open

terrain where there is no risk and the UAV’s glimpse detection probability is high. The lightly

shaded cells (C2) represent an area with intermediate risk and glimpse detection probability.
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We assume that the risks at different edges along a path are independent. If the prob-

ability of the UAV surviving edge (v, v′) ∈ A is σ(v, v′), then the probability of surviving

the path {vt}k
t=0 is simply Πk

l=1σ(vl−1, vl). Let σ̂ be a lower limit on the survival probability.

Then, a standard logarithmic transformation leads to the following constraint

k∑

l=1

− log σ(vl−1, vl) ≤ − log σ̂, (28)

which is in the form (3) and (4) with fi(vl−1, vl, l) = − log σ(vl−1, vl) and r̂i = − log σ̂.

For this computational experiment, we assume that the glimpse detection probability

and the survival probability for an edge (v, v′) ∈ E depend only on the cell and altitude cor-

responding to vertex v′ ∈ V as listed in Table 4. We note that glimpse detection probability

at high altitude is assumed to be 70% of the one at low altitude and the failure probability

(complement of the survival probability) at high altitude is 30% of the one at low altitude.

The UAV enters the airspace at high altitude over the northwest cell (cell 1; cells are

numbered from left to right, and from top to bottom) and will return to the same cell at

either high or low altitude at the end of the mission. The searcher is located at one vertex

each time period and searches the corresponding cell. For the next time period, the searcher

can stay at the same vertex, change altitude over the same cell, or move to a vertex (at any

altitude) corresponding to a vertically or horizontally adjacent cell. The maximum number

of time periods is T = 40, but the fuel consumption constraint may limit the number of

periods to less than 40. We assume that the fuel consumption at each time step is as follows:

10 units if there is no altitude change, 12(9) units if changing from low(high) altitude to

high(low) altitude. The initial position of the target is the center of the high risk region

(cell 68). The target remains in the current cell with a probability ρ = 0.6 for the next time

period or moves to one of the vertically or horizontally adjacent cells with equal probability.

The survival probability limit is a threshold that is set by the commander or planner.

A search path with lower survival probability than the threshold would not be accepted. In

this experiment, we consider the survival probability limits 0.95, 0.90,...,0.75, and 0.70, and

fuel consumption limit 300, 325, ..., 425, and 450.
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We solve this problem instance using Algorithm 3. Tables 5, 6, and 7 report computa-

tional results for different combinations of survival probability and fuel limits for the UAV.

When the fuel limit is tight (e.g., 300 and 325), the UAV cannot operate for the full duration

of 40 times steps. We observe that increasing the fuel limit beyond 425 do not increase the

probability of detection as the time limit of 40 periods becomes active. The average run time

is 580 seconds, with a standard deviation of 792. All problem instances are solved within one

hour and typically in much less. Figure 7 shows the optimal path given survival probability

limit 0.90 and fuel limit 400. The solid lines and the dashed lines represent flight segment

at low and high altitude, respectively.

We also consider the case with edge-dependent glimpse detection probability. Consider

the same situation as earlier described, but now assume that a move to a new waypoint

results in a lower glimpse detection probability than if the searcher already was at that

waypoint. Specifically, if v = v′, we let the glimpse detection probability g(v, v′, t) be as

in Table 4; otherwise we replace g(v, v′, t) by 0.1g(v, v′, t). Figure 8 shows an optimal path

found given survival probability and fuel limits of 0.90 and 400, respectively. In contrast to

the case with edge-independent glimpse detection probability (Figure 7), the searcher now

tends to stay for multiple time periods at the same waypoints in high-probability regions

to reap the benefits of the corresponding high glimpse detection probability. The run times

(not reported in detail) for the case with edge-dependent glimpse detection probabilities

are, on average, 53 seconds, with a standard deviation of 71 seconds. The reduction in run

time compared to the edge-independent case is caused by the often lower glimpse detection

probability (0.1g(v, v′, t)), which tightens the bound.

6 Conclusions

This paper formulates the resource-constrained search problem, which generalized existing

search models by considering (i) history-dependent glimpse detection probability, (ii) mul-

tiple altitudes for the searcher, and (iii) multiple constraints on “consumption” of resources

such as time, fuel, and risk. We develop a specialized branch-and-bound algorithm for the
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solution of the resource-constrained search problem. We propose a new bound on the opti-

mal probability of detection using network expansion to account for a portion of the history

of the current path and Lagrangian relaxation to eliminate resource constraints. After the

Lagrangian multiplier vector is optimized, the bound is computed using a single, backward

longest-path calculation in an acyclic graph. We also derive a series of network reduction

procedures that tighten the Lagrangian relaxation and reduces the amount of enumeration.

In direct comparison with a state-of-the-art algorithm for the time-constrained search

problem, the proposed bound and network reduction procedures reduce the run times with

at least an order of magnitude. In more complicated resource-constrained search problem

with time, fuel, and risk constraints as well as two altitudes, our algorithm solves realistic

instances typically within about 20 minutes.
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Static Bound Dynamic Bound [17] Dynamic Bound
Time Branching Time Scaled Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) (sec.) attempts (sec.) attempts
0.3 3.59 2,301,182 14.56 0.71 58,314 2.09 58,314

0.3 0.6 2.58 1,635,517 14.53 0.71 52,369 2.11 52,369
0.9 11.47 7,338,492 157.30 7.71 380,889 20.75 380,889
0.3 5.38 3,424,282 19.07 0.94 49,774 2.59 49,774

0.6 0.6 2.58 1,620,402 23.76 1.16 47,454 3.03 47,454
0.9 59.26 38,186,809 730.96 35.84 2,185,066 103.08 2,185,066
0.3 5.78 3,675,197 21.55 1.06 45,019 2.78 45,019

0.9 0.6 2.89 1,831,875 30.58 1.50 59,527 3.91 59,527
0.9 176.26 113,646,357 2902.27 142.30 11,299,259 431.38 11,299,259
0.3 6.09 3,865,002 N/A N/A N/A 2.91 46,339

0.99 0.6 3.00 1,896,960 N/A N/A N/A 3.91 58,752
0.9 192.06 123,822,672 N/A N/A N/A 558.63 16,685,969

Table 1: Run times and number of branching attempts for Algorithm 1 with static and dynamic
bounds on 11 by 11 cell search problem with time horizon T = 17. Columns labeled “Dynamic
Bound [17]” correspond to original and speed-adjusted results from [17].
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Algo. 1: D-Static Algo. 2: Static & Red. Algo. 2: D-Static & Red.
Time Branching Time Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) attempts (sec.) attempts
0.3 2.59 1,642,619 0.22 129,990 0.19 91,198

0.3 0.6 1.80 1,125,929 0.17 94,307 0.16 65,485
0.9 6.30 4,032,951 0.58 354,677 0.41 223,435
0.3 3.50 2,245,784 0.31 194,425 0.27 128,526

0.6 0.6 1.45 902,409 0.17 92,997 0.14 57,015
0.9 29.67 19,321,387 2.17 1,442,612 1.37 844,747
0.3 3.59 2,282,989 0.34 209,160 0.28 138,598

0.9 0.6 1.66 1,037,829 0.17 101,216 0.17 61,005
0.9 80.50 52,527,302 4.95 3,323,101 2.89 1,837,647
0.3 3.77 2,396,764 0.36 219,217 0.28 137,063

0.99 0.6 1.72 1,080,459 0.19 102,763 0.17 62,890
0.9 87.99 57,427,410 5.39 3,592,696 3.09 1,974,871

Table 2: Run time and number of branching attempt for Algorithm 1 on problem instances of
Table 1 using directional static bound (D-Static) and Algorithm 2 using static bound and network
reduction (Static & Red.) and directional static bound and network reduction (D-Static & Red.).

Algo. 2: D-Static & Red. Algo. 1: Dynamic Bound
Time Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) attempts
0.3 3.08 103,811 20.24 328,672

0.3 0.6 2.94 66,185 21.22 311,645
0.9 3.58 238,089 107.11 1,352,503
0.3 3.14 122,941 20.28 248,727

0.6 0.6 2.92 51,977 30.47 288,738
0.9 4.41 571,649 701.17 8,668,034
0.3 3.17 129,276 29.61 292,818

0.9 0.6 2.95 57,353 45.05 404,299
0.9 5.94 1,076,948 2323.48 30,173,994
0.3 3.13 128,776 31.97 301,498

0.99 0.6 2.92 60,449 48.42 441,664
0.9 5.77 1,016,918 3092.63 45,329,829

Table 3: Run times and number of branching attempts for Algorithm 2 with directional static
bound and network reduction compared with Algorithm 1 with dynamic bound on 15 by 15 cell
search problem with time horizon T = 20.
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Cell Altitude Glimpse probability Survival probability
C1 low 0.20 0.960

high 0.14 0.988
C2 low 0.40 0.980

high 0.28 0.994
C3 low 0.60 1.000

high 0.42 1.000

Table 4: Glimpse detection probability g(v, v′, t) and survival probability σ(v, v′) for different cells
and altitude.

Survival prob. limit = 0.95 Survival prob. limit = 0.90
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.131501 0.962466 300 26.89 300 0.135098 0.915157 300 29.58
325 0.153228 0.952892 321 98.20 325 0.166933 0.901925 322 32.66
350 0.176511 0.952892 350 3313.64 350 0.194440 0.915157 350 115.94
375 0.204686 0.952892 371 661.43 375 0.217277 0.901925 372 84.00
400 0.236651 0.962466 400 664.96 400 0.246767 0.902268 400 537.71
425 0.237081 0.952892 401 2721.68 425 0.249996 0.901925 402 361.60
450 0.237081 0.952892 401 2724.22 450 0.249996 0.901925 402 361.52

Table 5: Computational results for Algorithm 3. Survival probability limit = 0.95 and 0.90.

Survival prob. limit = 0.85 Survival prob. limit = 0.80
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.145309 0.851528 300 25.31 300 0.145809 0.805953 299 22.03
325 0.173000 0.851528 320 37.81 325 0.173218 0.839535 319 37.39
350 0.203183 0.851528 350 67.69 350 0.204891 0.805953 349 64.17
375 0.222393 0.851528 370 115.24 375 0.223377 0.805953 369 116.69
400 0.255481 0.851528 400 510.68 400 0.255813 0.827710 399 880.65
425 0.255481 0.851528 400 508.50 425 0.255813 0.827710 399 880.40
450 0.255481 0.851528 400 508.96 450 0.255813 0.827710 399 880.46

Table 6: Computational results for Algorithm 3. Survival probability limit = 0.85 and 0.80.
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Survival prob. limit = 0.75 Survival prob. limit = 0.70
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.150092 0.753377 300 21.33 300 0.150277 0.742767 299 21.38
325 0.175850 0.753377 320 37.50 325 0.176068 0.742767 319 31.16
350 0.205935 0.753377 350 63.84 350 0.206200 0.742767 349 53.42
375 0.223703 0.753377 370 125.97 375 0.224003 0.713056 369 121.33
400 0.255813 0.827710 399 1220.30 400 0.255813 0.827710 399 1280.52
425 0.255813 0.827710 399 1217.21 425 0.255813 0.827710 399 1277.52
450 0.255813 0.827710 399 1218.91 450 0.255813 0.827710 399 1282.42

Table 7: Computational results for Algorithm 3. Survival probability limit = 0.75 and 0.70.
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Figure 1: A discretized area of interest composing of C = 4 cells.

1c  2c  

3c  4c  

h  

h  

1

2

Figure 2: A discretized airspace over the area of interest (Figure 1) with H = 2 altitudes.
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Figure 3: A time-expanded graph from the network in Figure 1 and one altitude. The searcher’s
prior position is n0 = 〈v0, 0〉 = 〈〈1, 1〉, 0〉 and final position is n̂ = 〈v̂, T + 1〉.
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Figure 4: A node-and-time expanded network from the time-expanded graph (Figure 3).
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Time period 1 Time period 2

Time period 3 Time period 4

Figure 5: An area of interest composing of 5 by 5 cells. For each time period, the unshaded, lightly-
shaded, heavily-shaded, and completely-shaded cells describe the regions where neither searcher nor
target stay, only target possibly stays, only searcher possibly stays, and target and searcher possibly
stay, respectively.
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Figure 6: An area of interest composing of 10 by 10 cells and two altitudes. Heavily-shaded cells
(C1), lightly-shaded cells (C2), and unshaded cells (C3) describe risky, moderately risky, and non-
risky area respectively. The circle indicates the cell over which searcher starts and the triangle
specifies the initial position of the target.
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Figure 7: An optimal path for survival probability limit 0.90 and fuel limit 400. The solid lines
and the dashed lines represent flight segments at low and high altitude, respectively.
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Figure 8: An optimal path for a case with edge-dependent glimpse probability, survival probability
limit 0.90, and fuel limit 400. The solid lines and the dashed lines represent flight segments at low
and high altitude, respectively.
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